Operator Algebras in Lean

Jireh Loreaux

October 22, 2025

0.1 Introduction

0.2 Continuous functional calculus

Definition 1 (Continuous functional calculus). A *-R-algebra is said to have a continuous functional calculus for elements satisfying a predicate p if, for each a satisfying p, there is a *-homomorphism $\phi_a: C(\sigma_R(a), R) \to A$ sending the identity function to a, and which is a closed embedding. Moreover, $\sigma_R(a)$ is compact and nonempty, and ϕ_a satisfies the spectral mapping property (i.e., $\sigma_R(\phi_a(f)) = f(\sigma_R(a))$).

Definition 2 (Non-unital continuous functional calculus). A non-unital *-R-algebra is said to have a non-unital continuous functional calculus for elements satisfying a predicate p if, for each a satisfying p, there is a non-unital *-homomorphism $\phi_a: C(\sigma_R'(a),R)_0 \to A$ (here $C(\sigma_R'(a),R)_0$ is the collection of functions vanishing at zero on the quasispectrum) sending the identity function to a, and which is a closed embedding. Moreover, $\sigma_R'(a)$ is compact (it's always nonempty because it contains 0), and ϕ_a' satisfies the spectral mapping property (i.e., $\sigma_R'(\phi_a'(f)) = f(\sigma_R'(a))$).

Definition 3. Given $a \in A$ satisfying p and $f : R \to R$ continuous on $\sigma_R(a)$, we define $f(a) := \phi'_a(f)$ (and we give it a junk value of zero when either a does not satisfy p or f is not continuous on the spectrum).

Definition 4. Given $a \in A$ satisfying p and $f: R \to R$ continuous on $\sigma_R(a)$ and f(0) = 0, we define $f(a) := \phi'_a(f)$ (and we give it a junk value of zero when and of the conditions on a and f are not met).

Theorem 5. For every normal element a in a unital C^* -algebra A there is a *-isomorphism between $C(\sigma(a), \mathbb{C})$ and the C^* -subalgebra of A generated by a.

Proof.	Use the Gelfand	transform.	
--------	-----------------	------------	--

Theorem 6. Every unital C^* -algebra has a continuous functional calculus for normal elements.

Proof. Compose the *-isomorphism of Theorem 5, which is an isometry because its an isomorphism of C^* -algebras, with the inclusion of $C_1^*(a)$ (the unital C^* -subalgebra generated by a) into A. The latter is also an isometry and therefore a closed embedding.

Theorem 7. Every unital *-algebra A with a continuous functional calculus for normal elements over \mathbb{C} has a continuous functional calculus for self-adjoint elements over \mathbb{R} .

Proof. Since self-adjoint elements are normal, the continuous functional calculus for normal elements over $\mathbb C$ with its spectral mapping property guarantees that the $\mathbb C$ -spectrum of $a\in A$ normal is actually contained in $\mathbb R$, and so coincides with the $\mathbb R$ -spectrum of a. Therefore, the map which sends $f\in C(\sigma_{\mathbb R}(a),\mathbb R)$ to $\hat f\in C(\sigma_{\mathbb C}(a),\mathbb C)$ is a *-homomorphism, and composing it with ϕ_a yields the desired *-homomorphism for the continuous functional calculus over $\mathbb R$ for self-adjoint elements.

Theorem 8. Every unital *-algebra A which is a *-ordered ring (i.e., nonnegative elements are those of the form x^*x) with the property that nonnegative elements have nonnegative spectrum, and with a continuous functional calculus for self-adjoint elements over \mathbb{R} has a continuous functional calculus for self-adjoint elements over $\mathbb{R}_{\geq 0}$.

Proof. Omitted.]
-----------------	--	---

0.3 Products of nonnegative elements are nonnegative

Chapter 1

Sakai's Book

1.1 Definitions of C^* -algebras and W^* -algebras

Definition 9. A Banach *-algebra \mathcal{A} is called a C^* -algebra if it satisfies $||x^*x|| = ||x||^2$ for $x \in \mathcal{A}$.

Definition 10. A C^* -algebra \mathcal{M} is called a W^* -algebra if it is a dual space as a Banach Space (i.e., if there exists a Banach space \mathcal{M}_* such that $(\mathcal{M}_*)^* = \mathcal{M}$, where $(\mathcal{M}_*)^*$ is the dual Banach space of \mathcal{M}_*). We call such a Banach Space \mathcal{M}_* the predual of \mathcal{M} .