Topological space structure on Mᵈᵐᵃ and Mᵈᵃᵃ #
In this file we define TopologicalSpace structure on Mᵈᵐᵃ and Mᵈᵃᵃ
and prove basic theorems about these topologies.
The topologies on Mᵈᵐᵃ and Mᵈᵃᵃ are the same as the topology on M.
Formally, they are induced by DomMulAct.mk.symm and DomAddAct.mk.symm,
since the types aren't definitionally equal.
Tags #
topological space, group action, domain action
Put the same topological space structure on Mᵈᵃᵃ as on the original space.
Equations
- DomAddAct.instTopologicalSpace = TopologicalSpace.induced (⇑DomAddAct.mk.symm) inst
Put the same topological space structure on Mᵈᵐᵃ as on the original space.
Equations
- DomMulAct.instTopologicalSpace = TopologicalSpace.induced (⇑DomMulAct.mk.symm) inst
theorem
DomAddAct.continuous_mk_symm
{M : Type u_1}
[TopologicalSpace M]
:
Continuous ⇑DomAddAct.mk.symm
theorem
DomMulAct.continuous_mk_symm
{M : Type u_1}
[TopologicalSpace M]
:
Continuous ⇑DomMulAct.mk.symm
theorem
DomAddAct.mkHomeomorph.proof_1
{M : Type u_1}
[TopologicalSpace M]
:
Continuous DomAddAct.mk.toFun
theorem
DomAddAct.mkHomeomorph.proof_2
{M : Type u_1}
[TopologicalSpace M]
:
Continuous DomAddAct.mk.invFun
DomAddAct.mk as a homeomorphism.
Equations
- DomAddAct.mkHomeomorph = { toEquiv := DomAddAct.mk, continuous_toFun := ⋯, continuous_invFun := ⋯ }
Instances For
@[simp]
theorem
DomMulAct.mkHomeomorph_toEquiv
{M : Type u_1}
[TopologicalSpace M]
:
DomMulAct.mkHomeomorph.toEquiv = DomMulAct.mk
@[simp]
theorem
DomAddAct.mkHomeomorph_toEquiv
{M : Type u_1}
[TopologicalSpace M]
:
DomAddAct.mkHomeomorph.toEquiv = DomAddAct.mk
DomMulAct.mk as a homeomorphism.
Equations
- DomMulAct.mkHomeomorph = { toEquiv := DomMulAct.mk, continuous_toFun := ⋯, continuous_invFun := ⋯ }
Instances For
@[simp]
theorem
DomAddAct.coe_mkHomeomorph
{M : Type u_1}
[TopologicalSpace M]
:
⇑DomAddAct.mkHomeomorph = ⇑DomAddAct.mk
@[simp]
theorem
DomMulAct.coe_mkHomeomorph
{M : Type u_1}
[TopologicalSpace M]
:
⇑DomMulAct.mkHomeomorph = ⇑DomMulAct.mk
@[simp]
theorem
DomAddAct.coe_mkHomeomorph_symm
{M : Type u_1}
[TopologicalSpace M]
:
⇑DomAddAct.mkHomeomorph.symm = ⇑DomAddAct.mk.symm
@[simp]
theorem
DomMulAct.coe_mkHomeomorph_symm
{M : Type u_1}
[TopologicalSpace M]
:
⇑DomMulAct.mkHomeomorph.symm = ⇑DomMulAct.mk.symm
theorem
DomAddAct.closedEmbedding_mk
{M : Type u_1}
[TopologicalSpace M]
:
ClosedEmbedding ⇑DomAddAct.mk
theorem
DomMulAct.closedEmbedding_mk
{M : Type u_1}
[TopologicalSpace M]
:
ClosedEmbedding ⇑DomMulAct.mk
theorem
DomAddAct.embedding_mk_symm
{M : Type u_1}
[TopologicalSpace M]
:
Embedding ⇑DomAddAct.mk.symm
theorem
DomMulAct.embedding_mk_symm
{M : Type u_1}
[TopologicalSpace M]
:
Embedding ⇑DomMulAct.mk.symm
theorem
DomAddAct.openEmbedding_mk_symm
{M : Type u_1}
[TopologicalSpace M]
:
OpenEmbedding ⇑DomAddAct.mk.symm
theorem
DomMulAct.openEmbedding_mk_symm
{M : Type u_1}
[TopologicalSpace M]
:
OpenEmbedding ⇑DomMulAct.mk.symm
theorem
DomAddAct.closedEmbedding_mk_symm
{M : Type u_1}
[TopologicalSpace M]
:
ClosedEmbedding ⇑DomAddAct.mk.symm
theorem
DomMulAct.closedEmbedding_mk_symm
{M : Type u_1}
[TopologicalSpace M]
:
ClosedEmbedding ⇑DomMulAct.mk.symm
theorem
DomAddAct.quotientMap_mk_symm
{M : Type u_1}
[TopologicalSpace M]
:
QuotientMap ⇑DomAddAct.mk.symm
theorem
DomMulAct.quotientMap_mk_symm
{M : Type u_1}
[TopologicalSpace M]
:
QuotientMap ⇑DomMulAct.mk.symm
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
instance
DomAddAct.instCompletelyNormalSpace
{M : Type u_1}
[TopologicalSpace M]
[CompletelyNormalSpace M]
:
Equations
- ⋯ = ⋯
instance
DomMulAct.instCompletelyNormalSpace
{M : Type u_1}
[TopologicalSpace M]
[CompletelyNormalSpace M]
:
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
instance
DomAddAct.instSeparableSpace
{M : Type u_1}
[TopologicalSpace M]
[TopologicalSpace.SeparableSpace M]
:
Equations
- ⋯ = ⋯
instance
DomMulAct.instSeparableSpace
{M : Type u_1}
[TopologicalSpace M]
[TopologicalSpace.SeparableSpace M]
:
Equations
- ⋯ = ⋯
instance
DomAddAct.instFirstCountableTopology
{M : Type u_1}
[TopologicalSpace M]
[FirstCountableTopology M]
:
Equations
- ⋯ = ⋯
instance
DomMulAct.instFirstCountableTopology
{M : Type u_1}
[TopologicalSpace M]
[FirstCountableTopology M]
:
Equations
- ⋯ = ⋯
instance
DomAddAct.instSecondCountableTopology
{M : Type u_1}
[TopologicalSpace M]
[SecondCountableTopology M]
:
Equations
- ⋯ = ⋯
instance
DomMulAct.instSecondCountableTopology
{M : Type u_1}
[TopologicalSpace M]
[SecondCountableTopology M]
:
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
instance
DomAddAct.instLocallyCompactSpace
{M : Type u_1}
[TopologicalSpace M]
[LocallyCompactSpace M]
:
Equations
- ⋯ = ⋯
instance
DomMulAct.instLocallyCompactSpace
{M : Type u_1}
[TopologicalSpace M]
[LocallyCompactSpace M]
:
Equations
- ⋯ = ⋯
instance
DomAddAct.instWeaklyLocallyCompactSpace
{M : Type u_1}
[TopologicalSpace M]
[WeaklyLocallyCompactSpace M]
:
Equations
- ⋯ = ⋯
instance
DomMulAct.instWeaklyLocallyCompactSpace
{M : Type u_1}
[TopologicalSpace M]
[WeaklyLocallyCompactSpace M]
:
Equations
- ⋯ = ⋯
@[simp]
theorem
DomAddAct.map_mk_nhds
{M : Type u_1}
[TopologicalSpace M]
(x : M)
:
Filter.map (⇑DomAddAct.mk) (nhds x) = nhds (DomAddAct.mk x)
@[simp]
theorem
DomMulAct.map_mk_nhds
{M : Type u_1}
[TopologicalSpace M]
(x : M)
:
Filter.map (⇑DomMulAct.mk) (nhds x) = nhds (DomMulAct.mk x)
@[simp]
theorem
DomAddAct.map_mk_symm_nhds
{M : Type u_1}
[TopologicalSpace M]
(x : Mᵈᵃᵃ)
:
Filter.map (⇑DomAddAct.mk.symm) (nhds x) = nhds (DomAddAct.mk.symm x)
@[simp]
theorem
DomMulAct.map_mk_symm_nhds
{M : Type u_1}
[TopologicalSpace M]
(x : Mᵈᵐᵃ)
:
Filter.map (⇑DomMulAct.mk.symm) (nhds x) = nhds (DomMulAct.mk.symm x)
@[simp]
theorem
DomAddAct.comap_mk_nhds
{M : Type u_1}
[TopologicalSpace M]
(x : Mᵈᵃᵃ)
:
Filter.comap (⇑DomAddAct.mk) (nhds x) = nhds (DomAddAct.mk.symm x)
@[simp]
theorem
DomMulAct.comap_mk_nhds
{M : Type u_1}
[TopologicalSpace M]
(x : Mᵈᵐᵃ)
:
Filter.comap (⇑DomMulAct.mk) (nhds x) = nhds (DomMulAct.mk.symm x)
@[simp]
theorem
DomAddAct.comap_mk.symm_nhds
{M : Type u_1}
[TopologicalSpace M]
(x : M)
:
Filter.comap (⇑DomAddAct.mk.symm) (nhds x) = nhds (DomAddAct.mk x)
@[simp]
theorem
DomMulAct.comap_mk.symm_nhds
{M : Type u_1}
[TopologicalSpace M]
(x : M)
:
Filter.comap (⇑DomMulAct.mk.symm) (nhds x) = nhds (DomMulAct.mk x)